Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Med Inform ; 186: 105423, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38531254

RESUMO

BACKGROUND: Medical Imaging and radiotherapy (MIRT) are at the forefront of artificial intelligence applications. The exponential increase of these applications has made governance frameworks necessary to uphold safe and effective clinical adoption. There is little information about how healthcare practitioners in MIRT in the UK use AI tools, their governance and associated challenges, opportunities and priorities for the future. METHODS: This cross-sectional survey was open from November to December 2022 to MIRT professionals who had knowledge or made use of AI tools, as an attempt to map out current policy and practice and to identify future needs. The survey was electronically distributed to the participants. Statistical analysis included descriptive statistics and inferential statistics on the SPSS statistical software. Content analysis was employed for the open-ended questions. RESULTS: Among the 245 responses, the following were emphasised as central to AI adoption: governance frameworks, practitioner training, leadership, and teamwork within the AI ecosystem. Prior training was strongly correlated with increased knowledge about AI tools and frameworks. However, knowledge of related frameworks remained low, with different professionals showing different affinity to certain frameworks related to their respective roles. Common challenges and opportunities of AI adoption were also highlighted, with recommendations for future practice.


Assuntos
Inteligência Artificial , Humanos , Estudos Transversais , Diagnóstico por Imagem , Reino Unido
2.
BJR Open ; 5(1): 20230033, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37953871

RESUMO

Artificial intelligence (AI) has transitioned from the lab to the bedside, and it is increasingly being used in healthcare. Radiology and Radiography are on the frontline of AI implementation, because of the use of big data for medical imaging and diagnosis for different patient groups. Safe and effective AI implementation requires that responsible and ethical practices are upheld by all key stakeholders, that there is harmonious collaboration between different professional groups, and customised educational provisions for all involved. This paper outlines key principles of ethical and responsible AI, highlights recent educational initiatives for clinical practitioners and discusses the synergies between all medical imaging professionals as they prepare for the digital future in Europe. Responsible and ethical AI is vital to enhance a culture of safety and trust for healthcare professionals and patients alike. Educational and training provisions for medical imaging professionals on AI is central to the understanding of basic AI principles and applications and there are many offerings currently in Europe. Education can facilitate the transparency of AI tools, but more formalised, university-led training is needed to ensure the academic scrutiny, appropriate pedagogy, multidisciplinarity and customisation to the learners' unique needs are being adhered to. As radiographers and radiologists work together and with other professionals to understand and harness the benefits of AI in medical imaging, it becomes clear that they are faced with the same challenges and that they have the same needs. The digital future belongs to multidisciplinary teams that work seamlessly together, learn together, manage risk collectively and collaborate for the benefit of the patients they serve.

3.
Autism Adulthood ; 5(3): 248-262, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37663444

RESUMO

Background: Autistic individuals might undergo a magnetic resonance imaging (MRI) examination for clinical concerns or research. Increased sensory stimulation, lack of appropriate environmental adjustments, or lack of streamlined communication in the MRI suite may pose challenges to autistic patients and render MRI scans inaccessible. This study aimed at (i) exploring the MRI scan experiences of autistic adults in the United Kingdom; (ii) identifying barriers and enablers toward successful and safe MRI examinations; (iii) assessing autistic individuals' satisfaction with MRI service; and (iv) informing future recommendations for practice improvement. Methods: We distributed an online survey to the autistic community on social media, using snowball sampling. Inclusion criteria were: being older than 16, have an autism diagnosis or self-diagnosis, self-reported capacity to consent, and having had an MRI scan in the United Kingdom. We used descriptive statistics for demographics, inferential statistics for group comparisons/correlations, and content analysis for qualitative data. Results: We received 112 responses. A total of 29.6% of the respondents reported not being sent any information before the scan. Most participants (68%) confirmed that radiographers provided detailed information on the day of the examination, but only 17.1% reported that radiographers offered some reasonable environmental adjustments. Only 23.2% of them confirmed they disclosed their autistic identity when booking MRI scanning. We found that quality of communication, physical environment, patient emotions, staff training, and confounding societal factors impacted their MRI experiences. Autistic individuals rated their overall MRI experience as neutral and reported high levels of claustrophobia (44.8%). Conclusion: This study highlighted a lack of effective communication and coordination of care, either between health care services or between patients and radiographers, and lack of reasonable adjustments as vital for more accessible and person-centered MRI scanning for autistic individuals. Enablers of successful scans included effective communication, adjusted MRI environment, scans tailored to individuals' needs/preferences, and well-trained staff.


Why is this an important issue?: Magnetic resonance imaging (MRI) is an examination that shows human anatomy and may explain the causes of symptoms. Autistic people may need MRI scans for various reasons, such as low back pain, headaches, accidents, or epilepsy. They have known sensitivities to sound, light, smell, or touch and increased anxiety, so the narrow, loud, isolating, unfamiliar MRI environment may be overwhelming to them. If MRI scans are, for these reasons, inaccessible, many autistic people will have to live with long-standing conditions, pain, or other symptoms, or have delayed treatment, with impact on their quality of life, and life expectancy. What was the purpose of this study?: We tried to understand how autistic people perceive MRI examinations, things that work, and the challenges they face. We also asked for their suggestions to improve practice and accessibility. What did we do?: We distributed an online questionnaire to autistic adults through social media. We analyzed the data using appropriate statistical and text analysis methods. What were the results of the study?: We received 112 responses. Autistic people rated their overall MRI experience as average. Nearly a third (29.6%) reported they were not sent any information before MRI, and only 17.1% reported that radiographers offered some reasonable environmental adjustments. Most participants (68%) reported that radiographers provided detailed information on the day of the scan. Only 23.2% of them disclosed their autistic identity when booking MRIs. We found that quality of communication, physical environment, patient emotions, staff training, stigma, and timely autism diagnosis impacted their MRI experiences. What do these findings add to what was already known?: Autistic people MRI scan experiences are at the heart of this project. Our project shows that MRI for common symptoms is often inaccessible by autistic people. We should improve the MRI environment, adjust communication format/content for them, and deliver person-centered care in MRI. Health care professionals should receive relevant training, to understand the challenges autistic people might face and better support them in MRI scanning. What are potential weaknesses in the study?: The pandemic has impacted participant recruitment; therefore, the results of this sample may not reflect the full impact on the wider autistic population or adequately represent the autistic community, due to small size and including only people who could consent.These results come from different centers, so there is a lot of variation in the use of MRI equipment. How will these findings help autistic adults now or in the future?: We outline the main challenges associated with MRI, so autistic adults and their families/carers understand more of what they could expect in future examinations; hopefully, researchers and scanner manufacturers will try to tackle these challenges to make MRI scans truly accessible for autistic people.We shared this knowledge with stakeholders to develop guidelines and started using it in training. We want to ensure that MRI is person-centered and more accessible for autistic patients.

4.
J Med Imaging Radiat Sci ; 53(3): 347-361, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35715359

RESUMO

INTRODUCTION: As a profession, radiographers have always been keen on adapting and integrating new technologies. The increasing integration of artificial intelligence (AI) into clinical practice in the last five years has been met with scepticism by some, who predict the demise of the profession, whilst others suggest a bright future with AI, full of opportunities and synergies. Post COVID-19 pandemic need for economic recovery and a backlog of medical imaging and reporting may accelerate the adoption of AI. It is therefore timely to appreciate practitioners' perceptions of AI used in clinical practice and their perception of the short-term impact on the profession. AIM: This study aims to explore the perceptions of AI in the UK radiography workforce and to investigate its current AI applications and future technological expectations of radiographers. METHODS: An online survey (QualtricsⓇ) was created by a team of radiography AI experts. The survey was disseminated via social media and professional networks in the UK. Demographic information and perceptions of the impact of AI on several aspects of the radiography profession were gathered, including the current use of AI in practice, future expectations and the perceived impact of AI on the profession. RESULTS: 411 responses were collected (80% diagnostic radiographers (DR); 20% therapeutic radiographers (TR)). Awareness of AI used in clinical practice is low, with DR respondents suggesting AI will have the most value/potential in cross sectional imaging and image reporting. TR responses linked AI as having most value in treatment planning, contouring, and image acquisition/matching. Respondents felt that AI will impact radiographers' daily work (DR, 79.6%; TR, 88.9%) by standardising some aspects of patient care and technical factors of radiography practice. A mixed response about impact on careers was reported. CONCLUSIONS: Respondents were unsure about the ways in which AI is currently used in practice and how AI will impact on careers in the future. It was felt that AI integration will lead to increased job opportunities to contribute to decision making as an end user. Job security was not identified as a cause for concern.


Assuntos
Inteligência Artificial , COVID-19 , Estudos Transversais , Humanos , Pandemias , Reino Unido
5.
Front Digit Health ; 3: 739327, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34859245

RESUMO

Introduction: The use of artificial intelligence (AI) in medical imaging and radiotherapy has been met with both scepticism and excitement. However, clinical integration of AI is already well-underway. Many authors have recently reported on the AI knowledge and perceptions of radiologists/medical staff and students however there is a paucity of information regarding radiographers. Published literature agrees that AI is likely to have significant impact on radiology practice. As radiographers are at the forefront of radiology service delivery, an awareness of the current level of their perceived knowledge, skills, and confidence in AI is essential to identify any educational needs necessary for successful adoption into practice. Aim: The aim of this survey was to determine the perceived knowledge, skills, and confidence in AI amongst UK radiographers and highlight priorities for educational provisions to support a digital healthcare ecosystem. Methods: A survey was created on Qualtrics® and promoted via social media (Twitter®/LinkedIn®). This survey was open to all UK radiographers, including students and retired radiographers. Participants were recruited by convenience, snowball sampling. Demographic information was gathered as well as data on the perceived, self-reported, knowledge, skills, and confidence in AI of respondents. Insight into what the participants understand by the term "AI" was gained by means of a free text response. Quantitative analysis was performed using SPSS® and qualitative thematic analysis was performed on NVivo®. Results: Four hundred and eleven responses were collected (80% from diagnostic radiography and 20% from a radiotherapy background), broadly representative of the workforce distribution in the UK. Although many respondents stated that they understood the concept of AI in general (78.7% for diagnostic and 52.1% for therapeutic radiography respondents, respectively) there was a notable lack of sufficient knowledge of AI principles, understanding of AI terminology, skills, and confidence in the use of AI technology. Many participants, 57% of diagnostic and 49% radiotherapy respondents, do not feel adequately trained to implement AI in the clinical setting. Furthermore 52% and 64%, respectively, said they have not developed any skill in AI whilst 62% and 55%, respectively, stated that there is not enough AI training for radiographers. The majority of the respondents indicate that there is an urgent need for further education (77.4% of diagnostic and 73.9% of therapeutic radiographers feeling they have not had adequate training in AI), with many respondents stating that they had to educate themselves to gain some basic AI skills. Notable correlations between confidence in working with AI and gender, age, and highest qualification were reported. Conclusion: Knowledge of AI terminology, principles, and applications by healthcare practitioners is necessary for adoption and integration of AI applications. The results of this survey highlight the perceived lack of knowledge, skills, and confidence for radiographers in applying AI solutions but also underline the need for formalised education on AI to prepare the current and prospective workforce for the upcoming clinical integration of AI in healthcare, to safely and efficiently navigate a digital future. Focus should be given on different needs of learners depending on age, gender, and highest qualification to ensure optimal integration.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...